Bayesian Reasoning and Machine Learning
by David Barber
Publisher: Cambridge University Press 2011
ISBN/ASIN: 0521518148
ISBN-13: 9780521518147
Number of pages: 644
Description:
The book is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models.
Download or read it online for free here:
Download link
(15MB, PDF)
Similar books

by Yoshua Bengio - Now Publishers
This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.
(7421 views)

by Andriy Burkov
This is the first successful attempt to write an easy to read book on machine learning that isn't afraid of using math. It's also the first attempt to squeeze a wide range of machine learning topics in a systematic way and without loss in quality.
(7537 views)

by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(28085 views)

by Richard S. Sutton, Andrew G. Barto - The MIT Press
The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.
(26254 views)