**Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators**

by Nicolas Lerner

**Publisher**: BirkhĂ¤user 2009**ISBN/ASIN**: 376438509X**ISBN-13**: 9783764385095

**Description**:

This is a four-hundred-page book on the topic of pseudodifferential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. The first two parts of the book are accessible to graduate students with a decent background in Analysis. The third chapter is directed more to researchers.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**On Riemann's Theory of Algebraic Functions and their Integrals**

by

**Felix Klein**-

**Macmillan and Bowes**

In his scholarly supplement to Riemann's complex mathematical theory, rather than offer proofs in support of the theorem, Klein chose to offer this exposition and annotation, first published in 1893, in an effort to broaden and deepen understanding.

(

**11893**views)

**Elements of the Theory of Functions of a Complex Variable**

by

**G.E. Fisher, I.J. Schwatt**-

**Philadelphia G.E. Fisher**

Contents: Geometric representation of imaginary quantities; Functions of a complex variable in general; Multiform functions; Integrals with complex variables; General properties of functions; Infinite and infinitesimal values of functions; etc.

(

**8183**views)

**Lectures on Holomorphic Functions of Several Complex Variables**

by

**Piotr Jakobczak, Marek Jarnicki**-

**Jagiellonian University**

The text contains the background theory of several complex variables. We discuss the extension of holomorphic functions, automorphisms, domains of holomorphy, pseudoconvexity, etc. Prerequisites are real analysis and complex analysis of one variable.

(

**7448**views)

**Lectures on the Theory of Algebraic Functions of One Variable**

by

**M. Deuring**-

**Tata Institute of Fundamental Research**

We shall be dealing in these lectures with the algebraic aspects of the theory of algebraic functions of one variable. Since an algebraic function w(z) is defined by f(z,w)=0, the study of such functions should be possible by algebraic methods.

(

**9479**views)