**Evolution of Networks**

by S.N. Dorogovtsev, J.F.F. Mendes

**Publisher**: arXiv 2001**Number of pages**: 67

**Description**:

We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Lecture Notes on Thermodynamics and Statistical Mechanics**

by

**Daniel Arovas**-

**University of California, San Diego**

Contents: Probability 2. Thermodynamics 3. Ergodicity and the Approach to Equilibrium 4. Statistical Ensembles 5. Noninteracting Quantum Systems 6. Classical Interacting Systems 7. Mean Field Theory of Phase Transitions 8. Nonequilibrium Phenomena.

(

**9622**views)

**Thermodynamics and Statistical Physics**

by

**Hans Kroha**-

**University of Bonn**

Contents: Introduction and overview; Thermodynamics; Foundations of statistical physics; Ideal systems: some examples; Systems of identical particles; General formulation of statistical mechanics; Interacting systems in thermodyn. equilibrium.

(

**14107**views)

**Thermodynamics and Statistical Mechanics: An intermediate level course**

by

**Richard Fitzpatrick**-

**Lulu.com**

Set of lecture notes for an upper-division thermodynamics and statistical mechanics course. Covered topics are classical thermodynamics, the thermodynamics of the atmosphere, heat engines, specific heat capacities of gases and solids, etc.

(

**18984**views)

**The basic paradoxes of statistical classical physics and quantum mechanics**

by

**Oleg Kupervasser**-

**arXiv**

Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.

(

**13283**views)