Lectures on Differential Geometry
by John Douglas Moore
Publisher: University of California 2009
Number of pages: 263
Description:
This course will describe the foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms, de Rham cohomology and Morse homology.
Download or read it online for free here:
Download link
(1MB, PDF)
Similar books
Lectures on Geodesics in Riemannian Geometry
by M. Berger - Tata Institute of Fundamental Research
The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.
(9939 views)
by M. Berger - Tata Institute of Fundamental Research
The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.
(9939 views)
Semi-Riemann Geometry and General Relativity
by Shlomo Sternberg
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(18998 views)
by Shlomo Sternberg
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(18998 views)
Lectures notes on compact Riemann surfaces
by Bertrand Eynard - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(5703 views)
by Bertrand Eynard - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(5703 views)
An Introduction to Riemannian Geometry
by Sigmundur Gudmundsson - Lund University
The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.
(14755 views)
by Sigmundur Gudmundsson - Lund University
The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.
(14755 views)