
Introduction to Partial Differential Equations
by John Douglas Moore
Publisher: UCSB 2003
Number of pages: 169
Description:
Our goal here is to develop the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. In particular, we will present some of the elegant mathematics that can be used to describe the vibrating circular membrane.
Download or read it online for free here:
Download link
(2.7MB, PDF)
Similar books
Nonlinear Partial Differential Equations of Elliptic Typeby Vicentiu Radulescu - arXiv
This textbook provides the background which is necessary to initiate work on a Ph.D. thesis in Applied Nonlinear Analysis. The purpose is to provide a broad perspective in the subject. The level is aimed at beginning graduate students.
(10960 views)
An Algorithm for Constructing Lyapunov Functionsby Sigurdur Freyr Hafstein
In this monograph we develop an algorithm for constructing Lyapunov functions for arbitrary switched dynamical systems, possessing a uniformly asymptotically stable equilibrium. We give examples of Lyapunov functions constructed by our method.
(10238 views)
Partial Differential Equations: An Introductionby A.D.R. Choudary, Saima Parveen, Constantin Varsan - arXiv
This book encompasses both traditional and modern methods treating partial differential equation (PDE) of first order and second order. There is a balance in making a selfcontained mathematical text and introducing new subjects.
(15470 views)
Lectures on Periodic Homogenization of Elliptic Systemsby Zhongwei Shen - arXiv.org
In recent years considerable advances have been made in quantitative homogenization of PDEs in the periodic and non-periodic settings. This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems ...
(6223 views)