A Course in Riemannian Geometry
by David R. Wilkins
Publisher: Trinity College, Dublin 2005
Number of pages: 72
Description:
From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.
Download or read it online for free here:
Download link
(370KB, PDF)
Similar books
An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity
by Leonor Godinho, Jose Natario
Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).
(9333 views)
by Leonor Godinho, Jose Natario
Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).
(9333 views)
A Sampler of Riemann-Finsler Geometry
by D. Bao, R. Bryant, S. Chern, Z. Shen - Cambridge University Press
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.
(14346 views)
by D. Bao, R. Bryant, S. Chern, Z. Shen - Cambridge University Press
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.
(14346 views)
Holonomy Groups in Riemannian Geometry
by Andrew Clarke, Bianca Santoro - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(8473 views)
by Andrew Clarke, Bianca Santoro - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(8473 views)
Lectures notes on compact Riemann surfaces
by Bertrand Eynard - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(5522 views)
by Bertrand Eynard - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(5522 views)