Logo

A First Course of Partial Differential Equations in Physical Sciences and Engineering

Small book cover: A First Course of Partial Differential Equations in Physical Sciences and Engineering

A First Course of Partial Differential Equations in Physical Sciences and Engineering
by

Publisher: Arkansas Tech University
Number of pages: 285

Description:
Partial differential equations are often used to construct models of the most basic theories underlying physics and engineering. The goal of this book is to develop the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from the above mentioned fields.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Mathematical Theory of Scattering ResonancesMathematical Theory of Scattering Resonances
by - MIT
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; etc.
(11943 views)
Book cover: Finite Difference Computing with PDEsFinite Difference Computing with PDEs
by - Springer
This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners.
(7573 views)
Book cover: Introductory Finite Difference Methods for PDEsIntroductory Finite Difference Methods for PDEs
by - BookBoon
This book presents finite difference methods for solving partial differential equations (PDEs) and also general concepts like stability, boundary conditions etc. The book is intended for undergraduates who know Calculus and introductory programming.
(13460 views)
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(15373 views)