Neural Networks
by Rolf Pfeifer, Dana Damian, Rudolf Fuchslin
Publisher: University of Zurich 2010
Number of pages: 111
Description:
Systematic introduction to neural networks, biological foundations; important network classes and learning algorithms; supervised models (perceptrons, adalines, multi-layer perceptrons), support-vector machines, echo-state networks, non-supervised networks (competitive, Kohonen, Hebb), recurrent networks (Hopfield, CTRNNs - continuous-time recurrent neural networks), spiking neural networks, spike-time dependent plasticity, applications.
Download or read it online for free here:
Download link
(8.7MB, PDF)
Similar books

by Eugene M. Izhikevich, at al. - Scholarpedia
Neuroscience, Electrophysiology, Neuron, Network Dynamics, Brain Models, Synapse, Memory, Conditioning, Consciousness, Vision, Olfaction, Neuroimaging, Dynamical Systems, Oscillators, Synchronization, Pattern Formation, Chaos, Bifurcations, etc.
(16063 views)

- Wikibooks
Neural networks excel in a number of problem areas where conventional von Neumann computer systems have traditionally been slow and inefficient. This book is going to discuss the creation and use of artificial neural networks.
(14743 views)

by William Bialek - arXiv
We all are fascinated by the phenomena of intelligent behavior, as generated by our own brains. As physicists we want to understand if there are some general principles that govern the dynamics of the neural circuits that underlie these phenomena.
(10615 views)

by Xiaolin Hu, P. Balasubramaniam - InTech
The concept of neural network originated from neuroscience, and one of its aims is to help us understand the principle of the central nerve system through mathematical modeling. The first part of the book is dedicated to this aim.
(13359 views)