Higher Topos Theory
by Jacob Lurie
Publisher: Princeton University Press 2009
ISBN/ASIN: 0691140499
ISBN-13: 9780691140490
Number of pages: 943
Description:
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
Download or read it online for free here:
Download link
(3.9MB, PDF)
Similar books
Category Theory
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(12611 views)
- Wikibooks
This book is an introduction to category theory, written for those who have some understanding of one or more branches of abstract mathematics, such as group theory, analysis or topology. It contains examples drawn from various branches of math.
(12611 views)
Banach Modules and Functors on Categories of Banach Spaces
by J. Cigler, V. Losert, P.W. Michor - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(11167 views)
by J. Cigler, V. Losert, P.W. Michor - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(11167 views)
Notes on Category Theory with examples from basic mathematics
by Paolo Perrone - arXiv
These notes were originally developed as lecture notes for a category theory course. They should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics.
(1232 views)
by Paolo Perrone - arXiv
These notes were originally developed as lecture notes for a category theory course. They should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics.
(1232 views)
Basic Category Theory
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13339 views)
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13339 views)