**On Riemann's Theory of Algebraic Functions and their Integrals**

by Felix Klein

**Publisher**: Macmillan and Bowes 1893**ISBN/ASIN**: 1602063273**Number of pages**: 128

**Description**:

In his scholarly supplement to Riemann's complex mathematical theory, rather than offer proofs in support of the theorem, Klein chose to offer this exposition and annotation, first published in 1893, in an effort to broaden and deepen understanding. This approach makes Klein's commentary an essential element of any mathematics scholar's library.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Lectures on Entire Functions**

by

**B. Ya. Levin**-

**American Mathematical Society**

This monograph aims to expose the main facts of the theory of entire functions and to give their applications in real and functional analysis. The general theory starts with the fundamental results on the growth of entire functions of finite order.

(

**17154**views)

**Lectures on Holomorphic Functions of Several Complex Variables**

by

**Piotr Jakobczak, Marek Jarnicki**-

**Jagiellonian University**

The text contains the background theory of several complex variables. We discuss the extension of holomorphic functions, automorphisms, domains of holomorphy, pseudoconvexity, etc. Prerequisites are real analysis and complex analysis of one variable.

(

**7519**views)

**Notes on Automorphic Functions**

by

**Anders Thorup**-

**Kobenhavns Universitet**

In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. From the contents: Moebius transformations; Discrete subgroups; Modular groups; Automorphic forms; Poincare Series and Eisenstein Series.

(

**12372**views)

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**14616**views)