Commutative Algebra by Keerthi Madapusi

Small book cover: Commutative Algebra

Commutative Algebra

Publisher: Harvard University
Number of pages: 177

Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras and the Main Theorem of Zariski; Regular Sequences and Depth; The Cohen Macaulay Condition; Homological Theory of Regular Rings; Formal Smoothness and the Cohen Structure Theorems; etc.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Homological ConjecturesHomological Conjectures
by - University of Nebraska - Lincoln
This course is an overview of Homological Conjectures, in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, etc.
Book cover: Commutative AlgebraCommutative Algebra
by - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
Book cover: Progress in Commutative Algebra 2: Closures, Finiteness and FactorizationProgress in Commutative Algebra 2: Closures, Finiteness and Factorization
by - De Gruyter Open
This volume contains surveys on closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a guide to closure operations...
Book cover: Determinantal RingsDeterminantal Rings
by - Springer
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.