Category Theory and Functional Programming
by Mikael Vejdemo-Johansson
Publisher: University of St. Andrews 2012
Number of pages: 99
Description:
This text is intended to provide an introduction to Category Theory that ties into Haskell and functional programming as a source of examples and applications. Topics covered: The definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases of these, adjunctions, freeness and presentations as categorical constructs, monads and Kleisli arrows, recursion with categorical constructs.
Download or read it online for free here:
Read online
(online html)
Similar books
Introduction to Categories and Categorical Logic
by Samson Abramsky, Nikos Tzevelekos - arXiv
These notes provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions.
(13471 views)
by Samson Abramsky, Nikos Tzevelekos - arXiv
These notes provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions.
(13471 views)
Basic Category Theory
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13644 views)
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13644 views)
Categorical Homotopy Theory
by Emily Riehl - Cambridge University Press
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Emily Riehl discusses two competing perspectives by which one typically first encounters homotopy (co)limits ...
(5224 views)
by Emily Riehl - Cambridge University Press
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Emily Riehl discusses two competing perspectives by which one typically first encounters homotopy (co)limits ...
(5224 views)
Functors and Categories of Banach Spaces
by Peter W. Michor - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(11638 views)
by Peter W. Michor - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(11638 views)