**Harmonic Analysis**

by S.R.S. Varadhan

**Publisher**: New York University 2019**Number of pages**: 82

**Description**:

Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. Interpolation. Sobolev Spaces, Applications to PDE. Theorems of Paley-Wiener and Wiener. Hardy Spaces. Prediction. Compact Groups. Peter-Weyl Theorem.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Harmonic Analysis**

by

**Russell Brown**-

**University of Kentucky**

These notes are intended for a course in harmonic analysis on Rn for graduate students. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.

(

**9795**views)

**Contributions to Fourier Analysis**

by

**A. Zygmund, et al.**-

**Princeton University Press**

In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.

(

**7244**views)

**Spherical Harmonics in p Dimensions**

by

**Christopher Frye, Costas J. Efthimiou**-

**arXiv**

The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.

(

**9660**views)

**Lectures on Harmonic Analysis**

by

**Thomas Wolff**-

**American Mathematical Society**

An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.

(

**10653**views)