Logo

P, NP, and NP-Completeness: The Basics of Complexity Theory

Large book cover: P, NP, and NP-Completeness: The Basics of Complexity Theory

P, NP, and NP-Completeness: The Basics of Complexity Theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521122546
ISBN-13: 9780521122542
Number of pages: 190

Description:
The focus of this book is on the P-vs-NP Question, which is the most fundamental question of computer science, and on the theory of NP-completeness, which is its most influential theoretical discovery. The book also provides adequate preliminaries regarding computational problems and computational models.

Home page url

Download or read it online for free here:
Download link
(1.9MB, PS)

Similar books

Book cover: Measure-Preserving SystemsMeasure-Preserving Systems
by - University of North Carolina
These notes provide an introduction to the subject of measure-preserving dynamical systems, discussing the dynamical viewpoint; how and from where measure-preserving systems arise; the construction of measures and invariant measures; etc.
(10914 views)
Book cover: Computability and ComplexityComputability and Complexity
- Wikibooks
This book is intended as an introductory textbook in Computability Theory and Complexity Theory, with an emphasis on Formal Languages. Its target audience is CS and Math students with some background in programming and data structures.
(9141 views)
Book cover: Specifying SystemsSpecifying Systems
by - Addison-Wesley Professional
This book shows how to write unambiguous specifications of complex computer systems. It provides a complete reference manual for the TLA+, the language developed by the author for writing simple and elegant specifications of algorithms and protocols.
(15858 views)
Book cover: Mathematics and ComputationMathematics and Computation
by - Princeton University Press
The book provides a broad, conceptual overview of computational complexity theory -- the mathematical study of efficient computation. It is useful for undergraduate and graduate students in mathematics, computer science, and related fields.
(3597 views)