Logo

Linearization via the Lie Derivative

Small book cover: Linearization via the Lie Derivative

Linearization via the Lie Derivative
by

Publisher: American Mathematical Society
Number of pages: 64

Description:
The standard proof of the Grobman--Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by first establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. In this exposition we present a simple direct proof that avoids the discrete case altogether.

Download or read it online for free here:
Download link
(420KB, PDF)

Similar books

Book cover: Differential Equations with YouTube ExamplesDifferential Equations with YouTube Examples
by - BookBoon
This book, together with the linked YouTube videos, reviews a first course on differential equations. The purpose is to help students prepare for their exams. Theory is summarized, and the solutions of questions are demonstrated in YouTube videos.
(4301 views)
Book cover: Nonlinear Analysis and Differential EquationsNonlinear Analysis and Differential Equations
by - University of Utah
The intent of this set of notes is to present several of the important existence theorems for solutions of various types of problems associated with differential equations and provide qualitative and quantitative descriptions of solutions.
(10666 views)
Book cover: Second-order Ordinary Differential EquationsSecond-order Ordinary Differential Equations
by - Bookboon
This text provides an introduction to all the relevant material normally encountered at university level: series solution, special functions, Sturm-Liouville theory and the definition, properties and use of various integral transforms.
(6876 views)
Book cover: Periodic Solutions for Evolution EquationsPeriodic Solutions for Evolution Equations
by - American Mathematical Society
We study the existence and uniqueness of periodic solutions for evolution equations. We analyze the one-dimensional case, then for arbitrary dimensions. We consider linear symmetric operators. We prove the same results for non-linear operators.
(7014 views)