Lectures On Galois Cohomology of Classical Groups
by M. Kneser
Publisher: Tata Institute of Fundamental Research 1969
Number of pages: 212
Description:
The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle. Some of these are well known, in particular those for quadratic forms.
Download or read it online for free here:
Download link
(690KB, PDF)
Similar books
The Elements of the Theory of Algebraic Numbers
by Legh Wilber Reid - The Macmillan company
It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.
(9904 views)
by Legh Wilber Reid - The Macmillan company
It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.
(9904 views)
Notes on Galois Theory
by Mark Reeder - Boston College
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.
(9374 views)
by Mark Reeder - Boston College
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.
(9374 views)
Generic Polynomials: Constructive Aspects of the Inverse Galois Problem
by C. U. Jensen, A. Ledet, N. Yui - Cambridge University Press
A clearly written book, which uses exclusively algebraic language (and no cohomology), and which will be useful for every algebraist or number theorist. It is easily accessible and suitable also for first-year graduate students.
(15684 views)
by C. U. Jensen, A. Ledet, N. Yui - Cambridge University Press
A clearly written book, which uses exclusively algebraic language (and no cohomology), and which will be useful for every algebraist or number theorist. It is easily accessible and suitable also for first-year graduate students.
(15684 views)
Geometry of the Quintic
by Jerry Shurman - Wiley-Interscience
The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students to develop connections between the algebra, geometry, and analysis ...
(10965 views)
by Jerry Shurman - Wiley-Interscience
The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students to develop connections between the algebra, geometry, and analysis ...
(10965 views)