Logo

C*-algebras by John Erdos

Small book cover: C*-algebras

C*-algebras
by

Publisher: King's College, London
Number of pages: 51

Description:
These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

Download or read it online for free here:
Download link
(280KB, PDF)

Similar books

Book cover: Shape Analysis, Lebesgue Integration and Absolute Continuity ConnectionsShape Analysis, Lebesgue Integration and Absolute Continuity Connections
by - arXiv.org
As shape analysis is intricately related to Lebesgue integration and absolute continuity, it is advantageous to have a good grasp of the two notions. We review basic concepts and results about Lebesgue integration and absolute continuity.
(4417 views)
Book cover: Special Course in Functional Analysis: (Non-)Commutative TopologySpecial Course in Functional Analysis: (Non-)Commutative Topology
by - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(11706 views)
Book cover: Jordan Operator AlgebrasJordan Operator Algebras
by - Pitman
Introduction to Jordan algebras of operators on Hilbert spaces and their abstract counterparts. It develops the theory of Jordan operator algebras to a point from which the theory of C*- and von Neumann algebras can be generalized to Jordan algebras.
(14023 views)
Book cover: Basic Analysis Gently Done: Topological Vector SpacesBasic Analysis Gently Done: Topological Vector Spaces
by - King's College, London
These notes are based on lectures given as part of a mathematics MSc program. The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; etc.
(11080 views)