**Lectures on Representations of Complex Semi-Simple Lie Groups**

by Thomas J. Enright

**Publisher**: Tata Institute of Fundamental Research 1981**ISBN/ASIN**: 0387108297**ISBN-13**: 9780387108292**Number of pages**: 94

**Description**:

The purpose of the lectures was to describe a factorial correspondence between the theory of admissible representations for a complex semisimple Lie group and the theory of highest weight modules for a semisimple Lie algebra. A detailed description of the main results of this correspondence is given in section one.

Download or read it online for free here:

**Download link**

(470KB, PDF)

## Similar books

**Introduction to Representations of Real Semisimple Lie Groups**

by

**Matvei Libine**-

**arXiv**

These are lecture notes for a one semester introductory course I gave at Indiana University. The goal was to make this exposition as clear and elementary as possible. A particular emphasis is given on examples involving SU(1,1).

(

**7705**views)

**Introduction to Representation Theory**

by

**Pavel Etingof, at al.**-

**MIT**

Representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics and quantum field theory.

(

**13863**views)

**Lectures on Some Aspects of p-Adic Analysis**

by

**F. Bruhat**-

**Tata Institute of Fundamental Research**

The text covers the classical theory of valuated fields, results about representations of classical groups over a locally compact valuated field, and Dwork's proof of the rationality of the zeta function of an algebraic variety over a finite field.

(

**8803**views)

**Representation Theory of Compact Groups**

by

**Michael Ruzhansky, Ville Turunen**-

**Aalto TKK**

Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.

(

**11591**views)