Basic Data Analysis and More: A Guided Tour Using Python
by O. Melchert
Publisher: arXiv 2012
Number of pages: 62
Description:
In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations. From a point of view of data analysis, the concepts and techniques introduced here are of general interest and are, at best, employed by computational aid. Consequently, an exemplary implementation of the presented techniques using the Python programming language is provided.
Download or read it online for free here:
Download link
(910KB, PDF)
Similar books

by Marcus Kracht - UCLA
Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.
(13139 views)

by Prasanna Sahoo - University of Louisville
This book is an introduction to probability and mathematical statistics intended for students already having some elementary mathematical background. It is intended for a one-year junior or senior level undergraduate or beginning graduate course.
(12149 views)

by Muhammad El-Taha - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(27270 views)

by D. A. Levin, Y. Peres, E. L. Wilmer - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(14265 views)