Category Theory for Computing Science
by Michael Barr, Charles Wells
Publisher: Prentice Hall 1998
ISBN/ASIN: 0131204866
ISBN-13: 9780131204867
Number of pages: 544
Description:
This book is a textbook in basic category theory, written specifically to be read by researchers and students in computing science. We expound the constructions we feel are basic to category theory in the context of examples and applications to computing science.
Download or read it online for free here:
Download link
(2.1MB, PDF)
Similar books
Higher-Dimensional Categories: an illustrated guide book
by Eugenia Cheng, Aaron Lauda - University of Sheffield
This work gives an explanatory introduction to various definitions of higher-dimensional category. The emphasis is on ideas rather than formalities; the aim is to shed light on the formalities by emphasizing the intuitions that lead there.
(14083 views)
by Eugenia Cheng, Aaron Lauda - University of Sheffield
This work gives an explanatory introduction to various definitions of higher-dimensional category. The emphasis is on ideas rather than formalities; the aim is to shed light on the formalities by emphasizing the intuitions that lead there.
(14083 views)
Categories and Homological Algebra
by Pierre Schapira - UPMC
These notes introduce the language of categories and present the basic notions of homological algebra, first from an elementary point of view, next with a more sophisticated approach, with the introduction of triangulated and derived categories.
(10709 views)
by Pierre Schapira - UPMC
These notes introduce the language of categories and present the basic notions of homological algebra, first from an elementary point of view, next with a more sophisticated approach, with the introduction of triangulated and derived categories.
(10709 views)
Basic Category Theory
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13392 views)
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13392 views)
Higher Operads, Higher Categories
by Tom Leinster - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(13214 views)
by Tom Leinster - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(13214 views)