Logo

Vector Analysis Notes by Matthew Hutton

Small book cover: Vector Analysis Notes

Vector Analysis Notes
by

Publisher: matthewhutton.com
Number of pages: 63

Description:
Contents: Introduction; The real thing; Line Integrals; Gradient Vector Fields; Surface Integrals; Divergence of Vector Fields; Gauss Divergence Theorem; Integration by Parts; Green's Theorem; Stokes Theorem; Spherical Coordinates; Complex Differentation; Complex power series; Holomorphic Functions; Complex Integration; Cauchy's theorem; Cauchy Integral Formula; Real Integrals; Power Series for holomorphic functions; Real Sums.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Introduction to Vectors and Tensors Volume 2: Vector and Tensor AnalysisIntroduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis
by
The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.
(20284 views)
Book cover: Introduction to VectorsIntroduction to Vectors
by - Bookboon
Vectors provide a fascinating tool to describe motion and forces in physics and engineering. This book takes learning to a new level by combining written notes with online video. Each lesson is linked with a YouTube video from Dr Chris Tisdell.
(13496 views)
Book cover: Honors CalculusHonors Calculus
by - Rice University
The goal is to achieve a thorough understanding of vector calculus, including both problem solving and theoretical aspects. The orientation of the course is toward the problem aspects, though we go into great depth concerning the theory.
(16222 views)
Book cover: Vector Analysis and QuaternionsVector Analysis and Quaternions
by - John Wiley & Sons
Contents: Addition of Coplanar Vectors; Products of Coplanar Vectors; Coaxial Quaternions; Addition of Vectors in Space; Product of Two Vectors; Product of Three Vectors; Composition of Quantities; Spherical Trigonometry; Composition of Rotations.
(17305 views)