Vector Analysis Notes
by Matthew Hutton
Publisher: matthewhutton.com 2006
Number of pages: 63
Description:
Contents: Introduction; The real thing; Line Integrals; Gradient Vector Fields; Surface Integrals; Divergence of Vector Fields; Gauss Divergence Theorem; Integration by Parts; Green's Theorem; Stokes Theorem; Spherical Coordinates; Complex Differentation; Complex power series; Holomorphic Functions; Complex Integration; Cauchy's theorem; Cauchy Integral Formula; Real Integrals; Power Series for holomorphic functions; Real Sums.
Download or read it online for free here:
Download link
(1.4MB, PDF)
Similar books

by Ray M. Bowen, C.-C. Wang
The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.
(18852 views)

by Peter Saveliev
This is a two-semester course in n-dimensional calculus with a review of the necessary linear algebra. It covers the derivative, the integral, and a variety of applications. An emphasis is made on the coordinate free, vector analysis.
(10823 views)

by Tevian Dray, Corinne A. Manogue - Oregon State University
Contents: Chapter 1: Coordinates and Vectors; Chapter 2: Multiple Integrals; Chapter 3: Vector Integrals; Chapter 4: Partial Derivatives; Chapter 5: Gradient; Chapter 6: Other Vector Derivatives; Chapter 7: Power Series; Chapter 8: Delta Functions.
(11745 views)

by Francis Dominic Murnaghan - Johns Hopkins press
This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.
(14224 views)