Noncompact Harmonic Manifolds
by Gerhard Knieper, Norbert Peyerimhoff
Publisher: arXiv 2013
Number of pages: 84
Description:
In this paper we provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.
Download or read it online for free here:
Download link
(660KB, PDF)
Similar books
Ricci Flow and the Poincare Conjecture
by John Morgan, Gang Tian - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(14202 views)
by John Morgan, Gang Tian - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(14202 views)
Discrete Differential Geometry: An Applied Introduction
by M. Desbrun, P. Schroeder, M. Wardetzky - Columbia University
This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).
(15396 views)
by M. Desbrun, P. Schroeder, M. Wardetzky - Columbia University
This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).
(15396 views)
Notes on the Atiyah-Singer Index Theorem
by Liviu I. Nicolaescu - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(11445 views)
by Liviu I. Nicolaescu - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(11445 views)
Combinatorial Geometry with Application to Field Theory
by Linfan Mao - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(16034 views)
by Linfan Mao - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(16034 views)