Non-Euclidean Geometry: A Critical and Historical Study of its Development
by Roberto Bonola
Publisher: Open Court Publishing Company 1912
ISBN/ASIN: 0486600270
Number of pages: 292
Description:
Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. Ranging through the 17th, 18th, and 19th centuries, it considers forerunners and founders such as Saccheri, Lambert, Legendre, W. Bolyai, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.
Download or read it online for free here:
Download link
(multiple formats)
Similar books

by David C. Royster - UNC Charlotte
In this course the students are introduced, or re-introduced, to the method of Mathematical Proof. You will be introduced to new and interesting areas in Geometry, with most of the time spent on the study of Hyperbolic Geometry.
(11305 views)

by Julian Lowell Coolidge - Oxford At The Clarendon Press
Chapters include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; Geometric And Analytic Extension Of Space; etc.
(11661 views)

by J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry - MSRI
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.
(10014 views)

by Horatio Scott Carslaw - Longmans, Green and co.
In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.
(9075 views)