**A primer on information theory, with applications to neuroscience**

by Felix Effenberger

**Publisher**: arXiv 2013**Number of pages**: 58

**Description**:

This chapter is supposed to give a short introduction to the fundamentals of information theory; not only, but especially suited for people having a less firm background in mathematics and probability theory. Regarding applications, the focus will be on neuroscientific topics.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Essential Coding Theory**

by

**Venkatesan Guruswami, Atri Rudra, Madhu Sudan**-

**University at Buffalo**

Error-correcting codes are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to introduce redundancy so that the original information can be recovered ...

(

**9368**views)

**Information Theory and Coding**

by

**John Daugman**-

**University of Cambridge**

The aims of this course are to introduce the principles and applications of information theory. The course will study how information is measured in terms of probability and entropy, and the relationships among conditional and joint entropies; etc.

(

**23777**views)

**Information Theory, Excess Entropy and Statistical Complexity**

by

**David Feldman**-

**College of the Atlantic**

This e-book is a brief tutorial on information theory, excess entropy and statistical complexity. From the table of contents: Background in Information Theory; Entropy Density and Excess Entropy; Computational Mechanics.

(

**13907**views)

**Information Theory, Inference, and Learning Algorithms**

by

**David J. C. MacKay**-

**Cambridge University Press**

A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.

(

**29283**views)