**The Geometry of the Sphere**

by John C. Polking

**Publisher**: Rice University 2000**Number of pages**: 310

**Description**:

We are interested here in the geometry of an ordinary sphere. In plane geometry we study points, lines, triangles, polygons, etc. On the sphere we have points, but there are no straight lines. Therefore it is natural to use great circles as replacements for lines. Then we can talk about triangles and polygons and other geometrical objects.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**The Radon Transform**

by

**Sigurdur Helgason**-

**Birkhauser Boston**

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications.

(

**10787**views)

**Modern Geometry**

by

**Robert Sharpley**-

**University of South Carolina**

This course is a study of modern geometry as a logical system based upon postulates and undefined terms. Projective geometry, theorems of Desargues and Pappus, transformation theory, affine geometry, Euclidean, non-Euclidean geometries, topology.

(

**9203**views)

**Tilings and Patterns**

by

**E O Harriss**-

**Mathematicians.org.uk**

Contents: Background Material (Euclidean Space, Delone Sets, Z-modules and lattices); Tilings of the plane (Periodic, Aperiodic, Penrose Tilings, Substitution Rules and Tiling, Matching Rules); Symbolic and Geometric tilings of the line.

(

**9120**views)

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**14308**views)