Logo

Classical Electrodynamics by Robert G. Brown

Small book cover: Classical Electrodynamics

Classical Electrodynamics
by

Publisher: Duke University Physics Department
Number of pages: 331

Description:
This set of lecture notes is designed to be used to teach graduate students (and possibly advanced and motivated undergraduates) classical electrodynamics. In particular, it supports the second (more difficult) semester of a two semester course in electrodynamics that covers pretty much 'all' of the theory itself (omitting, of course, many topics or specific areas where it can be applied) out to the points where the theory itself breaks down.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Solutions to problems of Jackson's Classical ElectrodynamicsSolutions to problems of Jackson's Classical Electrodynamics
by - Samizdat Press
A collection of answers to problems from a graduate course in electrodynamics. The problems are mainly from Jackson's Classical Electrodynamics, with some practice problems. The answers provide the reader with a guideline to understand the problems.
(19713 views)
Book cover: Electromagnetism and Optics: An introductory courseElectromagnetism and Optics: An introductory course
by
Lecture notes for an lower-division electromagnetism and optics course: electric fields, Gauss' law, electric potential, capacitance, current, magnetism, magnetic induction, inductance, electromagnetic waves, geometric optics, and wave optics.
(20002 views)
Book cover: Introduction to Extended ElectrodynamicsIntroduction to Extended Electrodynamics
by - arXiv
This paper summarizes the results obtained in the frame of a particular non-linearization of Classical Electrodynamics. The main purpose is to have a reliable field-theoretical approach in describing (3+1) soliton-like electromagnetic formations.
(11829 views)
Book cover: Electromagnetic Fields and EnergyElectromagnetic Fields and Energy
by - MIT
The text is aimed at an audience that has seen Maxwell's equations in integral or differential form (second-term Freshman Physics) and had some exposure to integral theorems and differential operators (second term Freshman Calculus).
(9645 views)