Geometry of the Quintic
by Jerry Shurman
Publisher: Wiley-Interscience 1997
ISBN/ASIN: 0471130176
ISBN-13: 9780471130178
Number of pages: 208
Description:
The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students at the advanced undergraduate and beginning graduate levels to develop connections between the algebra, geometry, and analysis that they know, and to better appreciate the totality of what they have learned.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by Legh Wilber Reid - The Macmillan company
It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.
(10206 views)

by J. S. Milne
A concise treatment of Galois theory and the theory of fields, including transcendence degrees and infinite Galois extensions. Contents: Basic definitions and results; Splitting fields; The fundamental theorem of Galois theory; etc.
(12760 views)

by Mark Reeder - Boston College
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.
(9827 views)

by Emil Artin - University of Notre Dame
The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.
(6378 views)