An introduction to Noncommutative Projective Geometry
by D. Rogalski
Publisher: arXiv 2014
Number of pages: 55
Description:
These notes are an expanded version of the author's lectures at the graduate workshop 'Noncommutative Algebraic Geometry' at the Mathematical Sciences Research Institute in June 2012. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.
Download or read it online for free here:
Download link
(610KB, PDF)
Similar books

by David Surowski
A set of notes for a Higher Algebra course. It covers Group Theory, Field and Galois Theory, Elementary Factorization Theory, Dedekind Domains, Module Theory, Ring Structure Theory, Tensor Products, Zorn’s Lemma and some Applications.
(18194 views)

by J.H. Grace, A. Young - Cambridge, University Press
Invariant theory is a subject within abstract algebra that studies polynomial functions which do not change under transformations from a linear group. This book provides an English introduction to the symbolical method in the theory of Invariants.
(13028 views)

by Shlomo Sternberg
The Campbell Baker Hausdorff formula, sl(2) and its representations, classical simple algebras, Engel-Lie-Cartan-Weyl, conjugacy of Cartan subalgebras, simple finite dimensional algebras, cyclic highest weight modules, Serre’s theorem, and more.
(19273 views)

by Iain Gordon - University of Edinburgh
Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.
(13657 views)