**Differential Forms and Cohomology: Course**

by Peter Saveliev

**Publisher**: Intelligent Perception 2013**Number of pages**: 300

**Description**:

Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**15944**views)

**The Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres**

by

**Paul Goerss**-

**Northwestern University**

Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.

(

**11359**views)

**Homotopy Theories and Model Categories**

by

**W. G. Dwyer, J. Spalinski**-

**University of Notre Dame**

This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.

(

**8925**views)

**Equivariant Stable Homotopy Theory**

by

**G. Jr. Lewis, J. P. May, M. Steinberger, J. E. McClure**-

**Springer**

Our purpose is to establish the foundations of equivariant stable homotopy theory. We shall construct a stable homotopy category of G-spectra,and use it to study equivariant duality, equivariant transfer, the Burnside ring, and related topics.

(

**13702**views)