**How We Got From There to Here: A Story of Real Analysis**

by Robert Rogers, Eugene Boman

**Publisher**: Open SUNY Textbooks 2013**Number of pages**: 210

**Description**:

This book covers the major topics typically addressed in an introductory undergraduate course in real analysis in their historical order. Written with the student in mind, the book provides guidance for transforming an intuitive understanding into rigorous mathematical arguments.

Download or read it online for free here:

**Download link**

(3.4MB, PDF)

## Similar books

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**15203**views)

**Notes on Measure and Integration**

by

**John Franks**-

**arXiv**

My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

(

**7293**views)

**Real Analysis**

by

**A. M. Bruckner, J. B. Bruckner, B. S. Thomson**-

**Prentice Hall**

This book provides an introductory chapter containing background material as well as a mini-overview of much of the course, making the book accessible to readers with varied backgrounds. It uses a wealth of examples to illustrate important concepts.

(

**19665**views)

**Introduction to Infinitesimal Analysis: Functions of One Real Variable**

by

**N. J. Lennes**-

**John Wiley & Sons**

This volume is designed as a reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions.

(

**13746**views)