A Survey of Statistical Network Models
by A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi
Publisher: arXiv 2009
ISBN/ASIN: 1601983204
ISBN-13: 9781601983206
Number of pages: 96
Description:
We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books
The LION Way: Machine Learning plus Intelligent Optimizationby Roberto Battiti, Mauro Brunato - Lionsolver, Inc.
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.
(39432 views)
A Course in Machine Learningby Hal Daumé III - ciml.info
Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.
(25160 views)
A First Encounter with Machine Learningby Max Welling - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(14725 views)
Information Theory, Inference, and Learning Algorithmsby David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(32388 views)