**A Survey of Statistical Network Models**

by A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi

**Publisher**: arXiv 2009**ISBN/ASIN**: 1601983204**ISBN-13**: 9781601983206**Number of pages**: 96

**Description**:

We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Bayesian Reasoning and Machine Learning**

by

**David Barber**-

**Cambridge University Press**

The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.

(

**23162**views)

**A Course in Machine Learning**

by

**Hal DaumÃ© III**-

**ciml.info**

Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.

(

**22437**views)

**The Elements of Statistical Learning: Data Mining, Inference, and Prediction**

by

**T. Hastie, R. Tibshirani, J. Friedman**-

**Springer**

This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.

(

**40987**views)

**Machine Learning: A Probabilistic Perspective**

by

**Kevin Patrick Murphy**-

**The MIT Press**

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.

(

**4144**views)