**A Survey of Statistical Network Models**

by A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi

**Publisher**: arXiv 2009**ISBN/ASIN**: 1601983204**ISBN-13**: 9781601983206**Number of pages**: 96

**Description**:

We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Machine Learning: A Probabilistic Perspective**

by

**Kevin Patrick Murphy**-

**The MIT Press**

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.

(

**3532**views)

**Machine Learning**

by

**Abdelhamid Mellouk, Abdennacer Chebira**-

**InTech**

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.

(

**16037**views)

**Reinforcement Learning: An Introduction**

by

**Richard S. Sutton, Andrew G. Barto**-

**The MIT Press**

The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.

(

**26628**views)

**Boosting: Foundations and Algorithms**

by

**Robert E. Schapire, Yoav Freund**-

**The MIT Press**

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.

(

**6370**views)