Learning Deep Architectures for AI
by Yoshua Bengio
Publisher: Now Publishers 2009
ISBN/ASIN: 1601982941
ISBN-13: 9781601982940
Number of pages: 130
Description:
This monograph discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by Jan-Willem van de Meent, et al. - arXiv.org
This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.
(5565 views)

by Nils J Nilsson
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(31134 views)

by Csaba Szepesvari - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(8644 views)

by Osvaldo Simeone - arXiv.org
This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.
(7661 views)