Algebraic and Geometric Methods in Enumerative Combinatorics
by Federico Ardila
Publisher: arXiv 2014
Number of pages: 143
Description:
The guiding principle was to focus on algebraic and geometric techniques that are useful towards the solution of enumerative problems. The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.
Download or read it online for free here:
Download link
(1.8MB, PDF)
Similar books

by Kenneth P. Bogart - Dartmouth College
This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.
(10450 views)

by Klaus Truemper - Leibniz
Matroids were introduced in 1935 as an abstract generalization of graphs and matrices. Matroid decomposition covers the area of the theory dealing with decomposition and composition of matroids. The exposition is clear and simple.
(10537 views)

by Richard P. Stanley - MIT
The standard guide to the topic for students and experts alike. The material in Volume 1 was chosen to cover those parts of enumerative combinatorics of greatest applicability and with the most important connections with other areas of mathematics.
(7711 views)

by Darij Grinberg - arXiv.org
This is a detailed survey, with rigorous and self-contained proofs, of some of the basics of elementary combinatorics and algebra, including the properties of finite sums, binomial coefficients, permutations and determinants.
(3562 views)