**Topics in Algebraic Combinatorics**

by Richard P. Stanley

**Publisher**: MIT 2013**Number of pages**: 127

**Description**:

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; The Matrix-Tree Theorem; Eulerian digraphs and oriented trees; Cycles, bonds, and electrical networks; etc.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Analytic Combinatorics**

by

**Philippe Flajolet, Robert Sedgewick**-

**Cambridge University Press**

Deals with the the analysis of discrete structures, that emerged over the past years as an essential tool in the understanding of computer programs and models with applications in science. The text contains examples and exercises.

(

**17294**views)

**Combinatorics Through Guided Discovery**

by

**Kenneth P. Bogart**-

**Dartmouth College**

This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.

(

**9669**views)

**Combinatory Analysis**

by

**Percy A. MacMahon**-

**Cambridge University Press**

The object of this work is to present an account of theorems in combinatory analysis which are of a perfectly general character, and to shew the connexion between them by as far as possible bringing them together as parts of a general doctrine ...

(

**6966**views)

**Notes on the Combinatorial Fundamentals of Algebra**

by

**Darij Grinberg**-

**arXiv.org**

This is a detailed survey, with rigorous and self-contained proofs, of some of the basics of elementary combinatorics and algebra, including the properties of finite sums, binomial coefficients, permutations and determinants.

(

**2861**views)