**Topics in the Theory of Quadratic Residues**

by Steve Wright

**Publisher**: arXiv 2014**Number of pages**: 160

**Description**:

Beginning with the fundamental contributions of Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the key ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study as a window through which to view the development of some of those ideas and techniques.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**On Some of Smarandache's Problems**

by

**Krassimir Atanassov**-

**Erhus Univ Pr**

A collection of 27 Smarandache's problems which the autor solved by 1999. 22 problems are related to different sequences, 4 problems are proved, modifications of two problems are formulated, and counterexamples to two of the problems are constructed.

(

**13046**views)

**Arithmetic Duality Theorems**

by

**J.S. Milne**-

**BookSurge Publishing**

This book, intended for research mathematicians, proves the duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry, for example, in the proof of Fermat's Last Theorem.

(

**16089**views)

**Comments and topics on Smarandache notions and problems**

by

**Kenichiro Kashihara**-

**Erhus University Press**

An examination of some of the problems posed by Florentin Smarandache. The problems are from different areas, such as sequences, primes and other aspects of number theory. The problems are solved in the book, or the author raises new questions.

(

**13063**views)

**Modular Forms, Hecke Operators, and Modular Abelian Varieties**

by

**Kenneth A. Ribet, William A. Stein**-

**University of Washington**

Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...

(

**10217**views)