**Topics in the Theory of Quadratic Residues**

by Steve Wright

**Publisher**: arXiv 2014**Number of pages**: 160

**Description**:

Beginning with the fundamental contributions of Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the key ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study as a window through which to view the development of some of those ideas and techniques.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**Pluckings from the tree of Smarandache: Sequences and functions**

by

**Charles Ashbacher**-

**American Research Press**

The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.

(

**13997**views)

**Lectures on Shimura Varieties**

by

**A. Genestier, B.C. Ngo**

The goal of these lectures is to explain the representability of moduli space abelian varieties with polarization, endomorphism and level structure, due to Mumford and the description of the set of its points over a finite field, due to Kottwitz.

(

**6256**views)

**The Smarandache Function**

by

**C. Dumitrescu, V. Seleacu**-

**Erhus University Press**

The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.

(

**8422**views)

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**14016**views)