Logo

Topics in the Theory of Quadratic Residues

Small book cover: Topics in the Theory of Quadratic Residues

Topics in the Theory of Quadratic Residues
by

Publisher: arXiv
Number of pages: 160

Description:
Beginning with the fundamental contributions of Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the key ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study as a window through which to view the development of some of those ideas and techniques.

Home page url

Download or read it online for free here:
Download link
(960KB, PDF)

Similar books

Book cover: Pluckings from the tree of Smarandache: Sequences and functionsPluckings from the tree of Smarandache: Sequences and functions
by - American Research Press
The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.
(13997 views)
Book cover: Lectures on Shimura VarietiesLectures on Shimura Varieties
by
The goal of these lectures is to explain the representability of moduli space abelian varieties with polarization, endomorphism and level structure, due to Mumford and the description of the set of its points over a finite field, due to Kottwitz.
(6256 views)
Book cover: The Smarandache FunctionThe Smarandache Function
by - Erhus University Press
The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.
(8422 views)
Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(14016 views)