**The Axiomatic Method**

by L. Henkin, P. Suppes, A. Tarski

**Publisher**: North Holland Publishing Company 1959**ISBN/ASIN**: B000MXJS4E**Number of pages**: 508

**Description**:

The thirty-three papers in this volume constitute the proceedings of an international symposium on The axiomatic method, with special reference to geometry and physics. The volume naturally divides into three parts. Part I consists of fourteen papers on the foundations of geometry, Part II of fourteen papers on the foundations of physics, and Part III of five papers on general problems and applications of the axiomatic method.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Tilings and Patterns**

by

**E O Harriss**-

**Mathematicians.org.uk**

Contents: Background Material (Euclidean Space, Delone Sets, Z-modules and lattices); Tilings of the plane (Periodic, Aperiodic, Penrose Tilings, Substitution Rules and Tiling, Matching Rules); Symbolic and Geometric tilings of the line.

(

**11720**views)

**Convex Geometric Analysis**

by

**Keith Ball, Vitali Milman**-

**Cambridge University Press**

Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis.

(

**12673**views)

**The Axioms Of Descriptive Geometry**

by

**Alfred North Whitehead**-

**Cambridge University Press**

In this book, after the statement of the axioms, the ideas considered are those concerning the association of Projective and Descriptive Geometry by means of ideal points, point to point correspondence, congruence, distance, and metrical geometry.

(

**8696**views)

**An Elementary Course in Synthetic Projective Geometry**

by

**Derrick Norman Lehmer**-

**Project Gutenberg**

The book gives, in a simple way, the essentials of synthetic projective geometry. Enough examples have been provided to give the student a clear grasp of the theory. The student should have a thorough grounding in ordinary elementary geometry.

(

**12464**views)