Computational Physics With Python
by Eric Ayars
Publisher: California State University, Chico 2013
Number of pages: 194
Description:
Contents: Useful Introductory Python; Python Basics; Basic Numerical Tools; Numpy, Scipy, and MatPlotLib; Ordinary Differential Equations; Chaos; Monte Carlo Techniques; Stochastic Methods; Partial Differential Equations; Linux; Visual Python; Least-Squares Fitting.
Download or read it online for free here:
Download link
(7.5MB, PDF)
Similar books

by Jeffrey R. Chasnov - Harvey Mudd College
This course consists of both numerical methods and computational physics. MATLAB is used to solve various computational math problems. The course is primarily for Math majors and supposes no previous knowledge of numerical analysis or methods.
(9095 views)

by K. P. N. Murthy - arXiv
An introduction to the basics of Monte Carlo is given. The topics covered include sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, etc.
(14849 views)

by Matthias Troyer - ETH Zurich
Contents: Introduction; The Classical Few-Body Problem; Partial Differential Equations;The classical N-body problem; Integration methods; Percolation; Magnetic systems; The quantum one-body problem; The quantum N body problem; and more.
(11085 views)

by Badis Ydri - arXiv
We give an elementary introduction to computational physics. We deal with the problem of how to set up working Monte Carlo simulations of matrix field theories which involve finite dimensional matrix regularizations of noncommutative field theories.
(8021 views)