Deformations of Algebras in Noncommutative Geometry
by Travis Schedler
Publisher: arXiv 2015
Number of pages: 120
Description:
In these notes, we give an example-motivated review of the deformation theory of associative algebras in terms of the Hochschild cochain complex as well as quantization of Poisson structures, and Kontsevich's formality theorem in the smooth setting. We then discuss quantization and deformation via Calabi-Yau algebras and potentials.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by Giovanni Landi - arXiv
These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.
(12138 views)

by Thierry Masson - arXiv
This is an extended version of a three hours lecture given at the 6th Peyresq meeting 'Integrable systems and quantum field theory'. We make an overview of some of the mathematical results which motivated the development of noncommutative geometry.
(9416 views)

by Ana Cannas da Silva, Alan Weinstein - University of California at Berkeley
Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces.
(9169 views)

by Masoud Khalkhali - University of Western Ontario
Contents: Introduction; Some examples of geometry-algebra correspondence; Noncommutative quotients; Cyclic cohomology; Chern-Connes character; Banach and C*-algebras; Idempotents and finite projective modules; Equivalence of categories.
(7533 views)