Deformations of Algebras in Noncommutative Geometry
by Travis Schedler
Publisher: arXiv 2015
Number of pages: 120
Description:
In these notes, we give an example-motivated review of the deformation theory of associative algebras in terms of the Hochschild cochain complex as well as quantization of Poisson structures, and Kontsevich's formality theorem in the smooth setting. We then discuss quantization and deformation via Calabi-Yau algebras and potentials.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books
Very Basic Noncommutative Geometry
by Masoud Khalkhali - University of Western Ontario
Contents: Introduction; Some examples of geometry-algebra correspondence; Noncommutative quotients; Cyclic cohomology; Chern-Connes character; Banach and C*-algebras; Idempotents and finite projective modules; Equivalence of categories.
(8217 views)
by Masoud Khalkhali - University of Western Ontario
Contents: Introduction; Some examples of geometry-algebra correspondence; Noncommutative quotients; Cyclic cohomology; Chern-Connes character; Banach and C*-algebras; Idempotents and finite projective modules; Equivalence of categories.
(8217 views)
Notes on Noncommutative Geometry
by Igor Nikolaev - arXiv
The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. Intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts.
(6683 views)
by Igor Nikolaev - arXiv
The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. Intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts.
(6683 views)
Geometric Models for Noncommutative Algebra
by Ana Cannas da Silva, Alan Weinstein - University of California at Berkeley
Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces.
(9904 views)
by Ana Cannas da Silva, Alan Weinstein - University of California at Berkeley
Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces.
(9904 views)
Surveys in Noncommutative Geometry
by Nigel Higson, John Roe - American Mathematical Society
These lectures are intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, residue index theorem, etc.
(10309 views)
by Nigel Higson, John Roe - American Mathematical Society
These lectures are intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, residue index theorem, etc.
(10309 views)