Surveys in Noncommutative Geometry
by Nigel Higson, John Roe
Publisher: American Mathematical Society 2006
ISBN/ASIN: 0821838466
ISBN-13: 9780821838464
Number of pages: 208
Description:
The series of expository lectures intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory, residue index theorem of Connes and Moscovici, etc.
Download or read it online for free here:
Download link
(1.8MB, PDF)
Similar books

by Travis Schedler - arXiv
In these notes, we give an example-motivated review of the deformation theory of associative algebras in terms of the Hochschild cochain complex as well as quantization of Poisson structures, and Kontsevich's formality theorem in the smooth setting.
(5995 views)

by Igor Nikolaev - arXiv
The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. Intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts.
(5996 views)

by Ana Cannas da Silva, Alan Weinstein - University of California at Berkeley
Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces.
(9168 views)

by Thierry Masson - arXiv
This is an extended version of a three hours lecture given at the 6th Peyresq meeting 'Integrable systems and quantum field theory'. We make an overview of some of the mathematical results which motivated the development of noncommutative geometry.
(9415 views)