Logo

Elementary Principles of Statistical Mechanics

Large book cover: Elementary Principles of Statistical Mechanics

Elementary Principles of Statistical Mechanics
by

Publisher: Charles Scribner's Sons
ISBN/ASIN: 0486789950
Number of pages: 273

Description:
Written by J. Willard Gibbs, the most distinguished American mathematical physicist of the nineteenth century, this book was the first to bring together and arrange in logical order the works of Clausius, Maxwell, Boltzmann, and Gibbs himself. The lucid, advanced-level text remains a valuable collection of fundamental equations and principles.

Home page url

Download or read it online for free here:
Download link
(950KB, PDF)

Similar books

Book cover: Statistical Mechanics of Nonequilibrium LiquidsStatistical Mechanics of Nonequilibrium Liquids
by - ANU E Press
The book charts the development and theoretical analysis of molecular dynamics as applied to equilibrium and non-equilibrium systems. It connects molecular dynamics simulation with the mathematical theory to understand non-equilibrium steady states.
(12084 views)
Book cover: Lecture Notes in Statistical MechanicsLecture Notes in Statistical Mechanics
by - The J. Stefan Institute
These lectures cover classical and quantum statistical mechanics with some emphasis on classical spin systems. The author gives also an introduction to Bose condensation and superfluidity but he does not discuss phenomena specific to Fermi particles.
(9853 views)
Book cover: Statistical Field TheoryStatistical Field Theory
by - University of Cambridge
These notes are concerned with the physics of phase transitions: the phenomenon that in particular environments, many systems exhibit singularities in the thermodynamic variables which best describe the macroscopic state of the system.
(9470 views)
Book cover: Thermodynamics and Statistical PhysicsThermodynamics and Statistical Physics
by - University of Bonn
Contents: Introduction and overview; Thermodynamics; Foundations of statistical physics; Ideal systems: some examples; Systems of identical particles; General formulation of statistical mechanics; Interacting systems in thermodyn. equilibrium.
(15049 views)