Differential Equations of Mathematical Physics
by Max Lein
Publisher: arXiv 2015
Number of pages: 198
Description:
These lecture notes are aimed at mathematicians and physicists alike. It is not meant as an introductory course to PDEs, but rather gives an overview of how to view and solve differential equations that are common in physics. Among others, I cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
Download or read it online for free here:
Download link
(2.1MB, PDF)
Similar books
Foundations Of Potential Theory
by Oliver Dimon Kellog - Springer
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(7425 views)
by Oliver Dimon Kellog - Springer
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(7425 views)
Introduction to Mathematical Physics
by Alex Madon - Wikibooks
The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.
(10501 views)
by Alex Madon - Wikibooks
The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.
(10501 views)
Lie Groups in Physics
by G. 't Hooft, M. J. G. Veltman - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(15865 views)
by G. 't Hooft, M. J. G. Veltman - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(15865 views)
Lectures on Integrable Hamiltonian Systems
by G.Sardanashvily - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(9259 views)
by G.Sardanashvily - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(9259 views)