Euclidean Random Matrices and Their Applications in Physics
by A. Goetschy, S.E. Skipetrov
Publisher: arXiv 2013
Number of pages: 50
Description:
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler, standard random matrix ensembles are established. We discuss applications of Euclidean random matrices to contemporary problems in condensed matter physics, optics, and quantum chaos.
Download or read it online for free here:
Download link
(6.8MB, PDF)
Similar books

by Pavel Bleher, Alexander Its - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(17861 views)

by G.Sardanashvily - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(9468 views)

by Michael Stone, Paul Goldbart - Cambridge University Press
This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.
(19631 views)

by Max Lein - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(9959 views)