**Decision Making and Productivity Measurement**

by Dariush Khezrimotlagh

**Publisher**: arXiv 2016**Number of pages**: 214

**Description**:

I wrote this book as a self-teaching tool to assist every teacher, student, mathematician or non-mathematician for educating herself or others, and to support their understanding of the elementary concepts on assessing the performance of a set of homogenous firms, as well as how to correctly adapt mathematics to these concepts step by step, in order to underpin this area and rebuild the foundation and columns of efficiency measurement for further research.

Download or read it online for free here:

**Download link**

(4.6MB, PDF)

## Similar books

**Data Assimilation: A Mathematical Introduction**

by

**K.J.H. Law, A.M. Stuart, K.C. Zygalakis**-

**arXiv.org**

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation. Authors develop a framework in which a Bayesian formulation of the problem provides the bedrock for the derivation and analysis of algorithms.

(

**5615**views)

**Lectures on Optimization: Theory and Algorithms**

by

**John Cea**-

**Tata Institute of Fundamental Research**

Contents: Differential Calculus in Normed Linear Spaces; Minimization of Functionals; Minimization Without Constraints; Minimization with Constraints; Duality and Its Applications; Elements of the Theory of Control and Elements of Optimal Design.

(

**10656**views)

**The Design of Approximation Algorithms**

by

**D. P. Williamson, D. B. Shmoys**-

**Cambridge University Press**

This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. It is organized around techniques for designing approximation algorithms, including greedy and local search algorithms.

(

**15734**views)

**Notes on Optimization**

by

**Pravin Varaiya**-

**Van Nostrand**

The author presents the main concepts mathematical programming and optimal control to students having diverse technical backgrounds. A reasonable knowledge of advanced calculus, linear algebra, and linear differential equations is required.

(

**11761**views)