Introduction to the Theory of Fourier's Series and Integrals
by H. S. Carslaw
Publisher: Macmillan and co. 1921
ISBN/ASIN: 0486600483
Number of pages: 346
Description:
As an introductory explanation of the theory of Fourier's series, this clear, detailed text is outstanding. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and the second theorem of mean value, enlarged sets of examples on infinite series and integrals, and a section dealing with the Riemann Lebeague theorem and its consequences.
Download or read it online for free here:
Download link
(multiple formats)
Similar books

by M. Brelot - Tata Institute of Fundamental Research
In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.
(9989 views)

by John P. Boyd - Dover Publications
The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.
(20333 views)

by Sheldon Axler, Paul Bourdon, Wade Ramey - Springer
A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.
(14727 views)

by S.R.S. Varadhan - New York University
Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. etc...
(10858 views)