Spherical Harmonics in p Dimensions
by Christopher Frye, Costas J. Efthimiou
Publisher: arXiv 2012
Number of pages: 95
Description:
The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before beginning the main subject matter.
Download or read it online for free here:
Download link
(790KB, PDF)
Similar books

by J. Delsarte - Tata Institute of Fundamental Research
Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.
(9379 views)

by Pascal Auscher, Lashi Bandara - ANU eView
This book presents the material covered in graduate lectures delivered in 2010. Moving from the classical periodic setting to the real line, then to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.
(6475 views)

by Russell Brown - University of Kentucky
These notes are intended for a course in harmonic analysis on Rn for graduate students. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.
(10833 views)

by H. S. Carslaw - Macmillan and co.
An introductory explanation of the theory of Fourier's series. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and second theorem of mean value, enlarged sets of examples on infinite series, etc.
(7349 views)