**Modeling Agents with Probabilistic Programs**

by Owain Evans, et al.

**Publisher**: AgentModels.org 2017**Number of pages**: 345

**Description**:

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases and bounded rationality. The book assumes basic programming experience but is otherwise self-contained.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Machine Learning: A Probabilistic Perspective**

by

**Kevin Patrick Murphy**-

**The MIT Press**

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.

(

**4104**views)

**An Introductory Study on Time Series Modeling and Forecasting**

by

**Ratnadip Adhikari, R. K. Agrawal**-

**arXiv**

This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.

(

**12275**views)

**The Hundred-Page Machine Learning Book**

by

**Andriy Burkov**

This is the first successful attempt to write an easy to read book on machine learning that isn't afraid of using math. It's also the first attempt to squeeze a wide range of machine learning topics in a systematic way and without loss in quality.

(

**9526**views)

**Reinforcement Learning and Optimal Control**

by

**Dimitri P. Bertsekas**-

**Athena Scientific**

The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.

(

**9959**views)