Logo

Reinforcement Learning: An Introduction

Large book cover: Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction
by

Publisher: The MIT Press
ISBN/ASIN: 0262193981
ISBN-13: 9780262193986
Number of pages: 445

Description:
Reinforcement learning is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Reinforcement LearningReinforcement Learning
by - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(20997 views)
Book cover: Elements of Causal Inference: Foundations and Learning AlgorithmsElements of Causal Inference: Foundations and Learning Algorithms
by - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(5882 views)
Book cover: A First Encounter with Machine LearningA First Encounter with Machine Learning
by - University of California Irvine
The book you see before you is meant for those starting out in the field of machine learning, who need a simple, intuitive explanation of some of the most useful algorithms that our field has to offer. A prelude to the more advanced text books.
(11797 views)
Book cover: Introduction to Machine Learning for the SciencesIntroduction to Machine Learning for the Sciences
by - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(2815 views)