Logo

Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics

Large book cover: Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics

Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics
by

Publisher: MDPI AG
ISBN-13: 9783038425014
Number of pages: 370

Description:
With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal. This book could serve to illustrate the important aspect of symmetry problems in physics.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Applications of global analysis in mathematical physicsApplications of global analysis in mathematical physics
by - Publish or Perish, inc
The book introduces some methods of global analysis which are useful in various problems of mathematical physics. The author wants to make use of ideas from geometry to shed light on problems in analysis which arise in mathematical physics.
(12577 views)
Book cover: Mathematical Physics IIMathematical Physics II
by - SISSA
These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.
(13029 views)
Book cover: Mathemathical Methods of Theoretical PhysicsMathemathical Methods of Theoretical Physics
by - Edition Funzl
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.
(7158 views)
Book cover: Euclidean Random Matrices and Their Applications in PhysicsEuclidean Random Matrices and Their Applications in Physics
by - arXiv
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler random matrix ensembles are established.
(5310 views)