Logo

Three Lectures on Complexity and Black Holes

Small book cover: Three Lectures on Complexity and Black Holes

Three Lectures on Complexity and Black Holes
by

Publisher: arXiv.org
Number of pages: 84

Description:
The first lecture describes the meaning of quantum complexity, the analogy between entropy and complexity, and the second law of complexity. Lecture two reviews the connection between the second law of complexity and the interior of black holes. The final lecture is about the thermodynamics of complexity, and 'uncomplexity' as a resource for doing computational work.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Mathemathical Methods of Theoretical PhysicsMathemathical Methods of Theoretical Physics
by - Edition Funzl
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.
(10951 views)
Book cover: Introduction to Quantum IntegrabilityIntroduction to Quantum Integrability
by - arXiv
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.
(9870 views)
Book cover: Step-by-Step BS to PhD Math/PhysicsStep-by-Step BS to PhD Math/Physics
by - UC Riverside
These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics or physics.
(13882 views)
Book cover: Lectures on Integrable Hamiltonian SystemsLectures on Integrable Hamiltonian Systems
by - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(8798 views)