**A Friendly Introduction to Mathematical Logic**

by Christopher C. Leary, Lars Kristiansen

**Publisher**: Milne Library Publishing 2015**ISBN-13**: 9781942341079**Number of pages**: 380

**Description**:

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**An Introduction to Mathematical Logic**

by

**Wolfram Pohlers, Thomas Glass**

This text treats pure logic and in this connection introduces to basic proof-theoretic techniques. Fundamentals of model theory and those of recursion theory are dealt with. Furthermore, some extensions of first order logic are treated.

(

**9789**views)

**Introduction to Mathematical Logic: A problem solving course**

by

**Arnold W. Miller**-

**arXiv**

This is a set of questions written for a course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; etc.

(

**11001**views)

**Predicative Arithmetic**

by

**Edward Nelson**-

**Princeton Univ Pr**

The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.

(

**14459**views)

**Mathematical Logic**

by

**Stephen G. Simpson**-

**Pennsylvania State University**

Lecture notes for all mathematics graduate students. The text covers propositional calculus, predicate calculus, proof systems, extensions of the predicate calculus, theories, definability, interpretability, arithmetization and incompleteness.

(

**13017**views)